New data on the composition of the crystalline phases in the Cu–Te–O system

D. STAVRAKEVA*, Y. IVANOVA*, Y. PYROV[‡]

*Higher Institute of Chemical Technology, 1756 Sofia, Bulgaria *Scientific Manufacturing Enterprise of Electrothermics, 1870 Sofia, Bulgaria

With the help of X-ray microanalysis and X-ray analysis new data about the composition of the crystal phase in the Cu–Te–O system have been obtained. The data from the X-ray microanalysis were treated by the method of the number of the oxygen atoms, and the chemical formulae of the crystal phases were evaluated. The following phases were established: the real composition of the stoichiometric composition $2\text{TeO}_2 \cdot \text{CuO}$ corresponds to the crystalline phase $5\text{TeO}_2 \cdot 2\text{CuO}$ with variable composition in the limits from $7\text{TeO}_2 \cdot 3\text{CuO}$ to 11TeO_2 4CuO with X-ray data presented as $2\text{TeO}_2 \cdot \text{CuO}$ phase. The composition $\text{TeO}_2 \cdot \text{CuO}$ corresponds to a crystalline phase from $\text{TeO}_2 \cdot \text{CuO}$ to $6\text{TeO}_2 \cdot 5\text{CuO}$. From a melt of $\text{TeO}_2 \cdot \text{CuO}$ composition overcooled and crystallized is formed $5\text{CuO} \cdot 2\text{TeO}_2$. At a given composition $3\text{CuO} \cdot \text{TeO}_2$ or $3\text{CuO} \cdot \text{TeO}_3$ corresponds to the crystalline phase $5\text{CuO} \cdot 2\text{TeO}_3$ with two polymorphic modifications — cubic and tetragonal. The X-ray data obtained in the present investigation and those in literature are accepted to correspond to two polymorphic forms.

1. Introduction

During the study of the phase equilibrium in the $Cu_2O-CuO-TeO_2$ system [1-3] it was established that quenched melts and glasses form the following crystalline phases: TeO₂, Cu₂O, CuO, 2TeO₂ · CuO, TeO₂ · CuO, as well as one new phase "X" which corresponds to the $3CuO \cdot TeO_3$ phase according to X-ray data after Hostachy et al. [4]. Moreover, it was established that the "X" phase was formed when the synthesis was performed in an inert medium or under vacuum. In these cases free Cu₂O was crystallized from CuO-rich compositions. The method of triangulation of possible quasibinary sections in the CuO- TeO_2 system has been used [5] in the range of oxide phases and conclusions about their synthesis have been drawn. At the same time the formation of ternary compounds between Cu₂O, CuO and TeO₂ was not confirmed contrary to earlier suggestions [6].

The aim of the present investigation was to establish the real composition of the crystalline phases in the system, based on data X-ray microanalysis. Taking into account the possibility of oxide reduction processes, the complex phase equilibrium in the system, and the contradictory data in the literature about the compositions of the crystalline phases formed in it.

2. Experimental details

CuO (reagent grade), TeO₂ (99.9%) and TeO₃ (reagent grade) were used as starting raw materials for the synthesis. Compositions corresponding to the stoichiometric relations $2\text{TeO}_2 \cdot \text{CuO}$, $\text{TeO}_2 \cdot \text{CuO}$, $3\text{CuO} \cdot \text{TeO}_3$, $3\text{CuO} \cdot \text{TeO}_2$, $5\text{CuO} \cdot 2\text{TeO}_3$ were synthesized. The specimens were produced by two methods: (a) solid state synthesis between the

starting oxides (regime A) and (b) by the melting and consequent crystallization (regime B). The synthesis of the compositions was controlled by X-ray powder specimens, apparatus DRON and TuR-M-61 (CuK α -radiation, nickel filter) and the composition of the crystalline phases was determined by X-ray micro-analyser (Philips).

The results of the spectral analyses were treated using computer methods. The chemical formulae were evaluated on the basis of the oxygen method, as well as the data about the chemical composition of the crystalline phases.

3. Results and discussion

In Table I the given stoichiometric ratios and the conditions of thermal treatment are presented, and in Table II the characteristic X-ray data of known crystalline phases according to the literature are given. In Fig. 1 the morphological peculiarities of the crystalline phases are given. The results obtained of the chemical composition of the crystalline phase in Cu-Te-O system show that from a given stoichiometric composition $2\text{TeO}_2 \cdot \text{CuO}$ crystallizes a phase with variable composition of the crystalline individuals in the limits from $7\text{TeO}_2 \cdot 3\text{CuO}$ to $11\text{Te}_2 \cdot 4\text{CuO}$. It is obvious that these results allow the X-ray diffraction data assigned to the phase with $2\text{TeO}_2 \cdot \text{CuO}$ composition (Table II) to correspond to phase ratio $TeO_2 \cdot CuO$ from 7:3 to 11:4 with variable composition from 70 to 73.3% TeO₂.

At given stoichiometric composition $\text{TeO}_2 \cdot \text{CuO}$ and a synthesis carried out by solid phase interaction at temperatures below 600° C (regime A) data from the X-ray microanalysis show a deviation from the

TABLE I	Composition of	crystal	phases in	the Cu-Te-O	system
---------	----------------	---------	-----------	-------------	--------

Composition number	Given stoichiometric composition	Composition of the crystal phases from X-ray microanalysis data	Regime of crystallization
1	$2\text{TeO}_2 \cdot \text{CuO}$	$5\text{TeO}_2 \cdot 2\text{CuO(s.s.)}$ from $7\text{TeO}_2 \cdot 3\text{CuO}$ to $11\text{TeO}_2 \cdot 4\text{CuO}$	regime A at 600° C regime B — from a melt (680° C)
2	$TeO_2 \cdot CuO$	From $\text{TeO}_2 \cdot \text{CuO}$ to $6\text{TeO}_2 \cdot 5\text{CuO}$ (s.s.)	regime A at 600° C
3	TeO ₂ · CuO	5 CuO · 2 TeO $_2$	regime B — from a melt (1000° C) and overcooled and crystallization at 630° C
4	$3CuO \cdot 2TeO_2$	$CuO \cdot TeO_2 + 5CuO \cdot 2TeO_2$	regime A at 520° C
5	$3CuO \cdot TeO_2$	5CuO · 2TeO ₃	regime A at 720° C
6	3CuO · TeO ₃	5CuO · 2TeO ₃	regime A at 720° C
7	$3CuO \cdot TeO_3$	5CuO · 2TeO ₃	regime B at 800° C
8	5CuO · 2TeO ₃	5CuO · 2TeO ₃	regime A at 720° C regime B at 800° C
9	5CuO · 2TeO ₂	5CuO · 2TeO ₃	regime A at 720° C regime B at 800° C

Regime A -	- solid	state s	synthesis	s between	the starting oxides.
TABLE II	X-ray	y data	for the	phases in	Cu-Te-O system

$11\text{TeO}_{2} \cdot 4\text{CuO to} 7\text{TeO}_{2} \cdot 3\text{CuO (s.s.)}^{\dagger} or 2\text{TeO}_{2} \cdot \text{CuO [1, 2, 3, 10]} monoclinic [1, 10, †]}$			TeO ₂ · CuO to 7TeO ₂ · 6CuO (s.s.) [†] or TeO ₂ · CuO [1, 2, 3] orthorhombic [1, [†]]			$CuO \cdot TeO_3$ $(CuTeO_4)$ orthorhombic [7] $a = 0.55 \text{ nm}$		$5CuO \cdot 2TeO_3^{\dagger}$ or $3CuO \cdot TeO_3(Cu_3TeO_6)$ cubic [4, 8, 9] a = 0.9537 nm [8]				5CuO · 2TeO ₃ † tetragonal [†] Interplanar spacings [[†]] (Fig. 5)					
a =	$0.6869 \pm$	0.00	03 nm	a =	0.7604 ±	E 0.0	006 nm	<i>b</i> =	= 1.0327 nm	Inter	nlanar en	cings					
b =	$0.9324 \pm$	0.00	06 nm	b =	1.2705 -	<u>E</u> 0.0	006 nm	<i>c</i> =	= 0.4704 nm	[4 8	Planal spa]* and [4]*	temga					
<i>c</i> =	$0.7608 \pm$	0.00	06 nm	<i>c</i> =	0.5837 ±	- 0.0	004 nm			[-, 0	յ առելեյ						
$\beta =$	$109.08 \pm$	0.03	0	Inter	planar sj	pacin	gs										
Inter	planar spa	acing	s	[1, 1	1]*												
[1, 1	0, 11]* an	a [1]*	•														
Ι	d	Ι	d	Ι	d	Ι	d	Ι	d	Ι	d	Ι	d	Ι	d	I	d
	(nm)		(nm)		(nm)		(nm)		(nm)		(nm)		(nm)		(nm)		(nm)
30	0.6485*	10	0.2223	40	0.634	40	0.2620	40	0.1859	35	0.471*	< 2	0.1323	28	0.477	9	0.1322
80	0.4654	20	0.2164	40	0.530	40	0.2547	40	0.1850	10	0.389	2	0.1298	10	0.389	5	0.1319
60	0.3793	30	0.2091	40	0.487	40	0.2505	40	0.1831	10	0.337	6	0.1274	13	0.337	2	0.1297
30	0.3648	20	0.2054	60	0.435	40	0.2436	40	0.1806	100	0.275	2	0.1211	2	0.282	1	0.1292
30	0.3586	30	0.2034	40	0.429	40	0.2402	40	0.1789	1	0.254	6	0.1192	100	0.275	9	0.1273
20	0.3429	10	0.1990	40	0.380	40	0.2354	40	0.1766	40	0.238	2	0.1174	2	0.254	5	0.1270
80	0.3348	10	0.1960	40	0.374	40	0.2330	40	0.1763	2	0.224	6	0.1570	25	0.238	1	0.1210
10	0.3243	10	0.1908	40	0.363	60	0.2278	40	0.1741	6	0.213	2	0.1400	8	0.213	9	0.1192
20	0.3199	10	0.1870	60	0.343	40	0.2225	40	0.1738	8	0.203	4	0.1240	7	0.203	4	0.1190
70	0.3111	20	0.1844	40	0.326	40	0.2183	40	0.1732	13	0.1947	< 2	0.1109	13	0.1947	4	0.1173
100	0.3064	10	0.1822	60	0.318	40	0.2147	40	0.1720	10	0.1869	10	0.1094	10	0.1870	2	0.1170
30	0.2932	10	0.1798	40	0.312	40	0.2038	80	0.1716	< 2	0.1741	< 2	0.1080	2	0.1739	8	0.1156
50	0.2844	20	0.1763	80	0.309	40	0.1990	80	0.1711	40	0.1686	10	0.1066	45	0.1686	4	0.1152
50	0.2796	40	0.1718*	60	0.293	40	0.1985	40	0.1690	<2	0.1636	2	0.1053	13	0.1588	2	0.1139
70	0.2744	40	0.1704	40	0.2915	40	0.1926	40	0.1670	8	0.1589	4	0.1040	9	0.1583	6	0.1122
< 1	0.2481	40	0.1679	100	0.2846	40	0.1916	40	0.1662	4	0.1547	2	0.1028	2	∫0.1543	3	0.1120
10	0.2438	40	0.1675	90	0.2841	40	0.1901	40	0.1631	4	0.1508	2	0.1016	5	0.1539	12	0.1092
10	0.2383	40	0.1655	40	0.2786	40	0.1890	40	0.1625	6	0.1471	<2	0.1005	8	0.1505	8	0.1088
10	0.2351	40	0.1647	40	0.2662	40	0.1883			30	0.1437	2	0.9836	6	0.1502		
10	0.2244	40	0.1634	40	0.2650	40	0.1875			4	0.1406	6	0.0973	6	∫ 0.1469		
		40	0.1625							8	0.1376	2	0.0963	0	0.1465		
										< 2	0.1349*	4	0.0953	35	∫0.1436		
												2	0.0944	55	0.1433		
														4	0.1405		
														3	0.1402		
														12	0.1375		
														5	0.1371		

*Composition and interplanar spacings from corresponding reference. [†]Composition and interplanar spacings from current work.

Figure 1 Total appearance of the crystalline phases in the Cu-Te-O system. Scanning electron microscopy. Magnification $470 \times :$ (a) monocrystals of 5CuO \cdot 2TeO₃ in the 3CuO \cdot TeO₃ composition, (b) crystalline unit of 5CuO \cdot 2TeO₃, (c) stretched monoclinic-prismatic crystals of phase with variable composition (11TeO₂ \cdot 4CuO-7TeO₂ \cdot 3CuO) in 2TeO₂ \cdot CuO composition, (d) stretched prismatic crystals of phase with variable composition (TeO₂ \cdot CuO-6TeO₂ \cdot 5CuO) in TeO₂ \cdot CuO composition.

assigned one. The composition of the crystalline individuals changes in narrow limits from $\text{TeO}_2 \cdot \text{CuO}$ to $6\text{TeO}_2 \cdot 5\text{CuO}$. In the cases when the synthesis was performed by melting and following crystallization above 600° C (regime B) that a significant deviation from the given stoichiometric composition was found. According to the X-ray data, the product corresponds to the 3CuO \cdot TeO₃[4] phase, and the data from X-ray microanalysis show the existence of a glassy phase (Fig. 2), rich in TeO₂ (76 to 77%) and crystalline individuals with composition corresponding to TeO₂: CuO 2:5 radio (Fig. 2, Table III).

The consecutive synthesis of stoichiometric composition $3CuO \cdot TeO_2$ and $3CuO \cdot TeO_3$ show that it formed only one crystalline phase whose diffraction pictures correspond to the X-ray data in Table II

Figure 2 Analysed points in $\text{TeO}_2 \cdot \text{CuO}$ composition from a melt crystallized at 630° C for 1 h (Table III). Magnification 235 x. Scanning electron microscopy.

TABLE III Chemical composition at the analysed points in a composition $CuO \cdot TeO_2$ from a melt (1000°C) crystallized at 630°C, 1 h (Fig. 2) from X-ray microanalysis data

Analysis points	Composition (%)		Crystal chemical	
	Cu	Te	formula	
	CuO	TeO ₂		
	45.497	34.416		
l	56.954	43.047	$Cu_{5,13} Te_{1,93} O_9(5CuO + 2TeO_2)$	
2	45.600	34.313	C_{12} T_{22} $O(5C_{12}O_{12})$	
	57.082	42.919	$Cu_{5,14}Te_{1,93}O_{9}(5CuO \cdot 2TeO_{2})$	
2	44.821	35.093	C_{2} T ₂ $O(5C_{2}O+2T_{2}O)$	
3	56.107	43.893	$Cu_{5.06} Te_{1.97}O_9(5CuO \cdot 2TeO_2)$	
	44.887	35.027	C_{11} T ₂ $O(5C_{11}O + 2T_{2}O)$	
4	56.190	43.811	$Cu_{5.06} Te_{1.97} O_9 (5CuO \cdot 2TeO_2)$	
-	19.251	60.683	ala any akaon	
5	24.099	75.902	glassy phase	
	18.494	61.442	. 1 1	
0	23.150	76.851	glassy phase	

TABLE IV Chemical composition of the analysed crystals in a composition $3CuO \cdot TeO_3$ crystallized from a melt (Fig. 3) from X-ray microanalysis data

Analysis points	Composition (%)		Crystal chemical			
	Cu	Te	formula			
	CuO	TeO ₃				
· · · · · · · · · · · · · · · · · · ·	42.127	34.346	C_{μ} To $O_{\mu}(SC_{\mu}O_{\mu}, 2TeO_{\mu})$			
1	52.734	47.266	$Cu_{4.96} + e_{2.01}O_{11}(5CuO + 246O_3)$			
•	42.127	34.346	C_{11} Te $O_{1}(5C_{11}O_{1}, 2T_{2}O_{1})$			
2	52.734	47.266	$Cu_{4.96} + C_{2.01} + O_{11} + (5Cu + 5)^{-2} + (5Cu +$			
2	42.609	33.907	$C_{11} = T_{e} = O \left(5C_{11}O + 2T_{e}O\right)$			
3	53.339	46.662	$Cu_{5.03} + C_{1.99} + O_{11} + (5CuO + 24CO_3)$			
	42.600	33.916	C_{11} T_{22} O $(5C_{12}O + 2T_{2}O)$			
4	53.327	46.674	$Cu_{5.03} + e_{1.99}O_{11}(5CuO + 24EO_3)$			

TABLE V	Chemical	composition	of the	analysed	crystals	in a	composition	$5CuO \cdot 2TeO_3$,	crystallized	at s	solid-state	reaction	at
720° C (Fig. 4) from X-1	av microanal	vsis dat	a			•	-					

Analysis points	Composition (%)		Crystal chemical		
	Cu CuO	$\frac{\text{Te}}{\text{TeO}_3}$	tormula		
Fig. 3a					
1	$\frac{37.253}{46.633}$	<u>38.780</u> 53.368	$\mathrm{Cu}_{1.96}\mathrm{Te}_{1.01}\mathrm{O}_{5}(2\mathrm{CuO}\cdot\mathrm{TeO}_{3})$		
2	$\frac{41.486}{51.933}$	<u>34.929</u> <u>48.068</u>	$Cu_{4.87}Te_{2.04}O_{11}(5CuO \cdot 2TeO_3)$		
3	$\frac{42.284}{52.931}$	$\frac{34.203}{47.070}$	$Cu_{4.98}Te_{2.01}O_{11}(5CuO \cdot 2TeO_3)$		
4	$\frac{41.111}{51.464}$	$\frac{35.270}{48.537}$	$Cu_{4.82}Te_{2.06}O_{11}(5CuO \cdot 2TeO_3)$		
5	<u>42.418</u> 53.099	$\frac{34.081}{46.902}$	$Cu_{5.00}Te_{2.01}O_{11}(5CuO \cdot 2TeO_3)$		
Fig. 3b					
1	$\frac{42.928}{53.738}$	<u>33.617</u> 46.263	$Cu_{5.07}Te_{1.99}O_{11}(5CuO \cdot 2TeO_3)$		
2	$\frac{42.411}{53.090}$	<u>34.088</u> <u>46.911</u>	$Cu_{5.00}Te_{2.00}O_{11}(5CuO \cdot 2TeO_3)$		

Figure 3 Analysed crystals in a composition $3CuO \cdot TeO_3$ crystallized from a melt (Table IV). Magnification 235 x. Scanning electron microscopy.

presented for the $3\text{CuO} \cdot \text{TeO}_3$ phase. The real chemical composition in accordance with the data from X-ray microanalysis (Fig. 3, Table IV) corresponds to $5\text{CuO} \cdot 2\text{TeO}_3$.

The results mentioned above suppose synthesis of specimens corresponding to the stoichiometric radio 5:2 (CuO:TeO₂ or TeO₃) by using both regimes of synthesis (Fig. 4, Table V). The results of microanalysis show that in both cases a crystalline phase with 5CuO · 2TeO₃ composition was formed. Therefore the given interplanar distances for 3CuO · TeO₃ phase [4] in Table II should be assigned to the crystalline phase with 5CuO · 2TeO₃ composition. The crystalline phase mith 5CuO · 2TeO₃ composition. The crystalline phase [3] possesses composition in accordance with the data of X-ray microanalysis 5CuO · 2TeO₃.

In the X-ray data, as is seen in Table II, of $3\text{CuO} \cdot \text{TeO}_3$ [4] there are no interplanar distances with weak intensity and those in the interval $\theta = 28$ to 45° (CuK α) doublet lines [4] (Fig. 5, Table II), found by us in the powder samples. Thus, previous [4] evaluated parameters of the individual unit of $3\text{CuO} \cdot \text{TeO}_3$ phase which correspond to $5\text{CuO} \cdot 2\text{TeO}_3$ composition in real phase "X" [3] was assigned a cubic system.

During our optical observations [3] of this phase a weak anisotropic effect was found, which, along with the morphological peculiarities and the habitus allow us to assign it to a tetragonal system. The

Figure 5 X-ray diffractogram ($\theta = 28$ to 45° at CuK α radiation) of crystalline phase 5CuO · 2TeO₂, with the appearing additional interplanar distances (*) in contradiction to reference [4] about the 3CuO · TeO₃ composition.

differences found by us [4] are most probably connected with a polymorph transformation of the crystalline phase with $5CuO \cdot 2TeO_3$ composition. The cubic form of $3CuO \cdot TeO_3$ (in reality $5CuO \cdot 2TeO_3$), [4] is assigned to the structural type of bixbyite (Mn, Fe)₂O₃ for which the composition of two polymorphic modifications are also known. The structural differences in the X-ray diffraction picture determined by us [4] for $5CuO \cdot 2TeO_3$ composition most probably are due to the differences in the synthesis conditions.

4. Conclusions

With the help of X-ray microanalysis the real composition was determined of what was previously thought to be $2\text{TeO}_2 \cdot \text{CuO}$, $\text{TeO}_2 \cdot \text{CuO}$ and $3\text{CuO} \cdot \text{TeO}_3$ phases in the system Cu-Te-O (Fig. 6). The composition $2\text{TeO}_2 \cdot \text{CuO}$ corresponds to the crystalline phase $5\text{TeO}_2 \cdot 2\text{CuO}$ with variable composition in the limits from $7\text{TeO}_2 \cdot 3\text{CuO}$ to

Figure 4 Analysed crystals in a composition 5CuO \cdot 2TeO₃ crystallized at solid-state reaction at 720°C (Table V). Magnification: (a) 29.4 \times , (b) 235 \times . Scanning electron microscopy.

Figure 6 Crystalline phases in the Cu–Te–O system in accordance with the present investigation and reference [7].

 $11\text{TeO}_2 \cdot 4\text{CuO}$ with X-ray data presented as the $2\text{TeO}_2 \cdot \text{CuO}$ phase.

The composition $\text{TeO}_2 \cdot \text{CuO}$ corresponds to a crystalline phase with variable composition in narrow limits from $\text{TeO}_2 \cdot \text{CuO}$ to $5\text{TeO}_2 \cdot 6\text{CuO}$.

The suggested $3CuO \cdot TeO_3$ phase with which

corresponds a crystalline phase with composition $5\text{CuO} \cdot 2\text{TeO}_3$, as the X-ray data obtained in the present investigation [4] are accepted to correspond to the polymorphic forms – tetragonal and cubic.

References

- 1. J. MORET, E. PHILIPPOT and M. MAURIN, C. R. Acad. Sci. Paris, 269 (1969) C-123.
- Y. IVANOVA, M. MARINOVARA, Y. DIMITRIEV, C. R. Acad. Bulg. Sci. 25 (1972) 1391.
- 3. Y. DIMITRIEV, Y. IVANOVA, D. STAVRAKEVA and E. ILIEVA, SMSP 5 (1981) 8.
- A. HOSTACHY and J. COING-BOYAT, C. R. Acad. Sci. Ser. B 267 (1968) 1435.
- 5. Y. DIMITRIEV, Y. IVANOVA and D. STAVRAKEVA, Annuaire de l'ecole superieure de chimie technologique (1987) (in print).
- 6. V. KOZHUKHAROV, M. MARINOV and Y. PAV-LOVA, Mater. Chem. Phys. 10 (1984) 401.
- L. FALK, O. LINDQVIST, V. MARK, E. PHILIPPOT and J. MORET, Acta Crystallogr. B34 (1978) 1450.
- L. FALK, O. LINDQVIST and J. MORET, *ibid.* B34 (1978) 896.
- 9. C. BAYER, Z. Crystallogr. 124 (1967) 131.
- 10. S. WILLIAMS, Mineral. Mag. 43 (1979) 91.
- 11. Miner. Pow. Diff. File Data Book (JCPDS 22-1092; 33-494).

Received 4 January and accepted 23 August 1989